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Abstract. The adiabatic Holstein model describes interaction of electrons with classical
phonons. Near the anti-integrable limit, where electron–phonon coupling dominates electron
hopping, Aubry, Abramovici and Raimbault (1992J. Stat. Phys.67 675–780) found many local
minima of the energy, while at the opposite limit, called integrable, there is only one equilibrium
for each choice of mean electronic density. To eliminate the excess local minima on passing
from the anti-integrable to the integrable limit, there must be bifurcations with other critical
points of higher index:excited states. In this paper, we find all the critical points of the energy
at the two limits. We find that at the anti-integrable limit the excited states form submanifolds
and stratified sets of various types, which we call resonances. We show that homology index
theory implies that at least certain numbers of critical points from each resonance survive small
perturbation from the anti-integrable limit. We calculate these numbers explicitly for some
simple cases, and derive some general rules. The complete homology calculation in the general
case and the study of the bifurcations on the route to the integrable limit are left for the future.
We conclude by generalizing the approach to allow electron spin, magnetic fields and electron–
electron interactions.

1. Introduction

The Holstein model [Ho] describes systems in which fermions can hop between sites of a
networkS and interact with phonon variables on the sites but not with each other except
via Pauli’s exclusion principle. In the adiabatic limit, the phonon variables are regarded as
classical and motionless. The physical relevance of this limit can be questioned, but the
large ratio between atomic and electronic masses makes it a reasonable starting point. We
denote the phonon variable on sites by us . The Hamiltonian for the adiabatic Holstein
model is

H =
∑
s

1
2u

2
s + h (1)

with

h =
∑
s

cnsus − t1. (2)

Here

ns = a†s as (3)

† On leave from: Centre de Dynamique de Systèmes Complexes, Université de Bourgogne, Dijon, France.
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the number operator on sites for fermions, with creation and annihilation operatorsa†s , as
respectively, satisfying the anticommutation relations{ar, as} = {a†r , a†s } = 0, {a†r , as} = δrs ,
and1 is an off-diagonal Hermitian ‘hopping’ operator, i.e. preserving the total number

N =
∑
s

ns (4)

but not the individual numbersns , e.g.

1 =
∑
〈r,s〉

a†r as (5)

over nearest-neighbour pairs〈r, s〉 when S is a graph. For simplicity, in the first six
sections of this paper we consider spinless fermions. To treat electrons, the effects of
spin are included in section 7, where we also allow magnetic fields and electron–electron
interactions.

There are two parameters:c represents fermion–phonon coupling andt represents
fermion hopping amplitude. It is easily seen that only the ratioc2 : t plays a role. The
limits c2 : t = 0 and t : c2 = 0 are called by [AAR] the ‘integrable’ and ‘anti-integrable’
limits, respectively, by analogy with problems in Hamiltonian dynamics.

A state of the Holstein model is specified by giving a functionu : S → R and a
one-dimensional subspace9 of the complex Hilbert space� spanned by all vectors of the
form a

†
s1 . . . a

†
sk |∅〉 for any choice of set of distinct sitess1 . . . sk with k 6 S, the number of

sites inS, where|∅〉 is a ‘vacuum state’ withas |∅〉 = 0 for all s ∈ S. The energyW of a
state(u,9) is the expectation of the Hamiltonian in that state, i.e.

W(u,9) =
∑
s

1

2
u2
s +
〈ψ |h|ψ〉
〈ψ |ψ〉 (6)

whereψ is any non-zero element of9 (note that the result is independent of the choice
of representativeψ ∈ 9). For an infinite system,W might not be well defined, but
its derivative with respect to the state(u,9) is well defined, as is usual in variational
problems. Theequilibrium statesare the critical points of the energy.

Aubry, Abramovici and Raimbault [AAR] found all the local minima of the energy
for the adiabatic Holstein model at the anti-integrable limit(t = 0) and showed that they
have locally unique continuations for smallt (proof improved by [BM1] and extended to
non-zero temperature electrons in [BM2]), and have finite coherence length (proof improved
in [BM3]). In those papers, the term ‘equilibrium state’ was reserved for local minima. It
is clear by topological arguments, however, that there must be other critical points of the
energy, for example minimax points. In this paper, we find them all.

The HamiltonianH commutes with the total number operatorN , so without loss of
generality we can restrict attention to the subspaces with a definite number of fermions. We
restrict attention to finite systems, withS sites andF fermions. It is an open question to
what extent our continuation results from the anti-integrable limit can be made uniform in
S andF .

First, note that the space of fermionic states is topologically equivalent to† CPK , where

K =
(
S

F

)
− 1 (7)

† Complex projectiveK-spaceCPK is the quotient ofCK+1\{0} under the equivalence relationψ ∼ λψ for all
λ ∈ C\{0}.
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because the space of antisymmetricF -fermion wavefunctions overS sites is linear with
complex dimension(

S

F

)
= S!

F !(S − F)! . (8)

Secondly, the energy grows quadratically as any of theun go to infinity. Hence the energy
is a proper function fromRS × CPK to R, meaning that the inverse image of a compact
set is compact. Furthermore, the negative gradient of the energy is inward on the boundary
of a suitable large compact subsetB of RS ×CPK ; in fact, we know that all critical points
must haveu ∈ [−c, 0]S , because they satisfy

u = −cρ (9)

whereρs is the fermionic densityon sites, which liesa priori in [0, 1][AAR]. So we can
takeB to have the form [−c− ε, ε]S×CPK for someε > 0. It follows that the numbersci
of critical points ofW of index† i, if all non-degenerate, must satisfy the Morse inequalities
(e.g. [NS]):

i∑
j=0

(−)j ci−j >
i∑

j=0

(−)jβi−j for each 06 i 6 2K (10)

with equality for i = 2K, whereβi is the ith Betti number ofB, which is the same as that
for CPK , i.e.

βi =
{

1 if 0 6 i 6 2K is even

0 if i is odd.
(11)

In particular, by adding the inequalities fori = 2k and 2k − 1, there must be at least one

critical point of each even index 2k. Furthermore, since from [AAR] there areK+1=
(
S

F

)
critical points of index 0 at and near the anti-integrable limit, there must be at leastK critical
points of index 1, if non-degenerate. Even if the critical points are not all non-degenerate,
topological arguments (such as the minimax principle or Liusternik–Schnirelman theory,
e.g. [Sc], or homology index theory, which we will discuss in section 4) show that there
must be other critical points.

In this paper we show where these other critical points are, for parameter values at
and near the anti-integrable limit. We find that there are many degenerate critical points
which are not local minima; they form submanifolds or, more generally, ‘stratified sets’.
Furthermore, we show that the theory of ‘homology index’ for an isolated critical set
implies that at least certain numbers of critical points survive small perturbation. We also
find where all the critical points are at and near the integrable limit. This picture will help
in understanding how the equilibrium states bifurcate on passing from the anti-integrable to
the integrable limit.

The plan of the paper is as follows. In section 2, we analyse a simple pedagogical case:
one fermion on two sites in the whole of the(t, c) parameter space. Then in section 3 we
address the general case ofF fermions onS sites at the anti-integrable limitt : c2 = 0.
We review homology index theory in section 4, and compute it for a range of critical sets
in section 5 and derive some general results. In section 6 we address briefly the opposite
limit c2 : t zero or small. In section 7 we address the effects of spin, magnetic fields and
electron–electron interaction. The paper concludes with a discussion in section 8.

† For a reminder of the definition of the index of a non-degenerate critical point, see the beginning of section 4.
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2. A simple case: one fermion on two sites

We begin by analysing a simple case:S = 2, F = 1. We writeψs for the complex amplitude
of the fermion on sites, and without loss of generality we suppose the wavefunction is
normalized:

|ψ1|2+ |ψ2|2 = 1. (12)

Then

W = 1
2u

2
1+ 1

2u
2
2+ cu1|ψ1|2+ cu2|ψ2|2− t (ψ1ψ̄2+ ψ̄1ψ2). (13)

Completing the square gives

W = 1
2(u1+ c|ψ1|2)2+ 1

2(u2+ c|ψ2|2)2− 1
2c

2(|ψ1|4+ |ψ2|4)− t (ψ1ψ̄2+ ψ̄1ψ2). (14)

So theu-dependence is quadratic, and at all critical points the first two terms vanish. Thus
we are left with

W = − 1
2c

2(|ψ1|4+ |ψ2|4)− t (ψ1ψ̄2+ ψ̄1ψ2). (15)

After identifying pairs(ψ1, ψ2) which differ by a global phase factor, the space of fermionic
degrees of freedom becomesCP 1, which is the Riemann sphere. One can use spherical
coordinates(θ, ϕ) as follows:

ψ1 = cos
θ

2
, ψ2 = eiϕ sin

θ

2
for 06 θ < π, ϕ ∈ T1 = R/2πZ

ψ1 = e−iϕ cos
θ

2
, ψ2 = sin

θ

2
for 0< θ 6 π, ϕ ∈ T1

(16)

which agree in the overlap zone 0< θ < π up to a global phase factor. In these coordinates,
W becomes

W = − 1
2c

2(1− 1
2 sin2 θ)− t cosϕ sinθ. (17)

For t = 0, the critical points inCP 1 are two minima atθ = 0 andπ respectively (the north
and south poles), corresponding to putting the fermion on one site or the other, and a circle
of maxima atθ = π/2 (the equator), corresponding to making a ‘resonant pair’ where the
fermion spends half its time on each site.

This circle of critical points is ‘normally hyperbolic’ [Fe] for the negative gradient flow
of W . Following Bott [Bo] we define theindex of a submanifold of critical points, if it is
normally hyperbolic for the negative gradient flow ofW , to be the dimension of the unstable
manifold of any of its points, in other words, the dimension of the unstable manifold of
the critical submanifold minus its own dimension. Thus this circle of critical points has
index 1.

For t non-zero, the degeneracy is lifted. The equator is still invariant under the gradient
flow, but only the pointsϕ = 0 andπ remain critical; they are of index 1 and 2 respectively.
As t increases, the minima at the poles migrate along the semicircleϕ = 0 according to

sinθ = ±2t/c2 (18)

until t = 1
2c

2, when they coalesce with the index 1 point and it becomes of index 0.
Thereafter, ast continues to increase, or equivalently asc decreases, the critical points
remain just one of index 2 atθ = π/2, ϕ = π and one of index 0 atθ = π/2, ϕ = 0. At
the integrable limit,u1 = u2 = 0 for both critical points and they correspond to the two
eigenstates for the fermion.

The sequence of events is sketched in figure 1.
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Figure 1. Critical points of the energy on the Riemann sphere for one fermion on two sites for
three values oft : c2. (a) t = 0 (anti-integrable limit), (b) 0< t : c2 < 1

2 , (c) t : c2 > 1
2 .

3. The anti-integrable limit

Having seen what happens for the special case of one fermion on two sites, we now proceed
to the general case ofF fermions onS sites. In this section we study the anti-integrable
limit in parameter space, wheret : c2 = 0; without loss of generality we putc = 1.

At the anti-integrable limit, there are

(
S

F

)
local minima, given by choosingF out of

the S sites to be occupied and the remainder unoccupied. The main point of this paper is
that there are also critical points of higher index. They come in isolated subsets, some of
which are differentiable submanifolds but many of which are only ‘stratified sets’ (to be
defined shortly). They arise by formation of groups of ‘resonant’ sites. We will proceed by
examining a few cases and then formulate a general theorem.

The simplest case is resonant pairs, generalizing section 2. If a pair of sites is chosen to
be ‘resonant’, withρs = −us = 1

2, and the remainingF−1 fermions are put onF−1 of the
remainingS−2 sites as desired, then one obtains a critical circle of index 1. It is a circle of
critical points because the relative phase of the fermion wavefunction on the resonant pair
of sites is arbitrary. It has index 1 because at the anti-integrable limit there is no coupling
between sites, so the resonant pair can be treated as in section 2. We call such a circle

of critical points a ‘12-resonance’. The number of such critical circles is

(
S

2 F − 1

)
,

using the multinomial notation(
S

r1 · · · rk

)
= S!

r1! . . . rk!(S −
∑

i ri)!
. (19)

Similarly, critical two-tori of index 2 occur by choosing a triple of sites to be
resonant, withρs = −us = 1

3 (or 2
3), and putting the remainingF − 1 (respectively,

F − 2) fermions onF − 1 (F − 2) of the remainingS − 3 sites. This can be done in(
S

3 F − 1

)
+
(

S

3 F − 2

)
ways. Each choice gives a critical two-torus which

we call a 1
3 or 2

3 resonance, respectively. The case of one fermion on three sites has
index two because completing the square as in section 2 leavesW = − 1

2

∑
ρ2
s at the anti-

integrable limit, withρs = |ψs |2, and the constraint
∑
ρs = 1. Subject to this constraint,

W is maximum when all threeρs = 1
3, which defines a two-torus after identifying states
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which differ only by a global phase shift, and has unstable manifold of dimension four,
hence index two. The same result can be obtained in the case of two fermions on three
sites by fermion–hole symmetry.

Critical manifolds of index 3 occur in several ways. One can put one or three fermions
on a resonant quadruplet withρs = −us = 1

4 or 3
4 respectively, the remaining fermions

being put onF − 1 (resp.F − 3) of the remainingS − 4 sites. Each choice gives a critical
three-torus of index 3, called a14 or 3

4 resonance.
Alternatively, one can put two fermions on a resonant quadruplet withρs = −us = 1

2,
and the remainingF − 2 on any choice of the remainingS − 4 sites. There are(

S

4 F − 2

)
ways of doing this. Each of these choices gives a connected set of

critical points called a2
4-resonance, which is not a submanifold as it has some singularities,

but nonetheless can be regarded as being seven-dimensional and of index 3, as follows.
To see the structure of the24-resonance, the space of two-fermion states on a set of four

sites has complex dimension

(
4
2

)
− 1= 5, with homogeneous coordinatesψ12, ψ13, ψ14,

ψ23, ψ24, ψ34, say, whereψij corresponds to applying the creation operatora
†
i a
†
j to the

vacuum. For convenience, we will impose the normalization condition
∑ |ψij |2 = 1. The

resonance condition imposes the restrictions

ρ1 = |ψ12|2+ |ψ13|2+ |ψ14|2 = 1
2 (20)

ρ2 = |ψ12|2+ |ψ23|2+ |ψ24|2 = 1
2 (21)

ρ3 = |ψ13|2+ |ψ23|2+ |ψ34|2 = 1
2 (22)

ρ4 = |ψ14|2+ |ψ24|2+ |ψ34|2 = 1
2. (23)

Taking 1
2[(20)+ (21)+ (22)− (23)] yields

|ψ12|2+ |ψ13|2+ |ψ23|2 = 1
2. (24)

Subtracting (20) from this, we obtain

|ψ14|2 = |ψ23|2. (25)

Similarly

|ψ34|2 = |ψ12|2 (26)

and

|ψ24|2 = |ψ13|2. (27)

Thus for non-zero choices ofψ12, ψ13, ψ23 on the five-sphere (24) we have a three-torus
given by (25)–(27) (with angles argψ14, argψ34, argψ24) which reduces to a two-torus on
elimination of global phase rotation. Hence forψ12, ψ13, ψ23 6= 0, the 2

4 resonance is locally
a seven-dimensional submanifold. But nearψ12 = 0, for example, withψ13,ψ23 6= 0, it has
locally the structure ofK × T3× I , whereK is a cone over a two-torus,

K = {(ψ12, ψ34) ∈ C2 : |ψ12|2 = |ψ34|2}, (28)

Td denotes ad-torus andI an interval. This is because given(ψ12, ψ34) ∈ K and
|ψ13| ∈ (0, 1/

√
2), then (24) determines|ψ23| and (25), (27) give a four-torus, which

reduces to a three-torus on elimination of global phase rotation.
Thus the 2

4-resonance isnot a submanifold. Instead it is astratified set, meaning
a locally finite disjoint union of smooth submanifolds of various dimensions (called the
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‘strata’), such that ifU andV are strata and the closurēU intersectsV thenV ⊂ Ū , with
for each stratum an algebraic local model for the neighbourhood of any point of the stratum
(see [Mat] for a more general definition). In the case of the2

4-resonance, the strata are a
seven-dimensional submanifold (ψ12, ψ13, ψ23 6= 0), three four-dimensional submanifolds
(ψ12 = 0, ψ13, ψ23 6= 0 and permutations) and three circles (ψ12 = 0, ψ13 = 0, ψ23 6= 0 and
permutations) (look ahead to figure 3). We define thedimensionof a stratified set to be the
maximum of the dimensions of its strata, giving seven for the2

4-resonance.
Bott’s definition of index (section 2) does not generalize easily to stratified sets, as in

general they are not normally hyperbolic (nor even submanifolds). In the case of a repelling
stratified set, however, it is natural to define its index to be its codimension. Thus the2

4

resonance has index 3 because it corresponds to a maximum ofW = − 1
2

∑4
s=1 ρ

2
s in the

space where
∑
ρs = 2, so is repelling, and the total fermionic space has (real) dimension

10. In the next section we will show a better generalization of the definition of index of a
critical set.

Another type of critical set can be obtained by taking several resonant tuples with
different fermionic densities. The simplest case is that of a resonant pair withρ = 1

2 and
a resonant triple withρ = 1

3 ( 2
3 is similar). This gives a critical set of dimension seven

which turns out to be a differentiable submanifold. We call it a1
2 × 1

3 product resonance.
To show that it is a submanifold, suppose without loss of generality thatρ1 = ρ2 = 1

2 and
ρ3 = ρ4 = ρ5 = 1

3. Its equations are (modulo global phase rotation)

ψ12 = ψ34 = ψ35 = ψ45 = 0 (29)

and

|ψ13|2 + |ψ14|2 + |ψ15|2 = 1
2+ + +

|ψ23|2 + |ψ24|2 + |ψ25|2 = 1
2‖ ‖ ‖

1
3

1
3

1
3

. (30)

This defines a two-dimensional hexagon in the space of|ψij |2, illustrated in figure 2. The
set of points of the1

2 × 1
3-resonance projecting to any disk in the interior of the hexagon

is diffeomorphic toD2× T5, whereD2 denotes a closed two-dimensional disk. The set of
points projecting to a thin strip including an edge of the hexagon and neighbourhoods of its
endpoints is aT2-bundle overD2× S3, whereSd denotes ad-sphere, because without loss
of generality choose the edge|ψ13|2 = 0; then forε > 0 we have{ψ13 : |ψ13|2 6 ε} ∼= D2,
|ψ23|2 = 1

3 − |ψ13|2 gives a circle for eachψ13 (if ε < 1
3) which we reduce to a point by

global phase rotation,|ψ24|2+|ψ25|2 = 1
6+|ψ13|2 gives anS3 for eachψ13, and the equations

|ψ14|2 = 1
3 − |ψ24|2 and |ψ15|2 = 1

3 − |ψ25|2 give aT2 for each(ψ13, ψ24, ψ25) ∈ D2 × S3

(if ε < 1
6). Alternatively, the strip can be viewed as aT3-bundle overD2× S2 by applying

the global phase rotation to theS3 instead of the circle.
It is clear that these constructions can be continued, giving critical sets of a huge variety

of types, consisting of collections of resonantQ-tuplets with densityρs = −us = P/Q for
any integersP,Q such that 26 Q 6 M and 0< P < Q. In particular, for a large system,
any sequence of rational densities can be obtained locally. Note that the cases 1/Q and
(Q− 1)/Q give (Q− 1)-tori of indexQ− 1.

It is also clear that formation of resonant sets is the only way to make critical points at
the anti-integrable limit, other than the local minima. In outline, this is because all critical
points must satisfyρs = −us , and for any sites for which us is distinct from the values at
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Figure 2. The space of squared amplitudes of the components of the wavefunction for the
1
2 × 1

3-resonance is a hexagon.

all other sites, the fermionic stationary states all haveρs = 0 or 1. We formulate this as a
theorem.

Theorem 1.The critical set at the anti-integrable limit in theF -fermion subspace, is the
disjoint union of compact isolated critical setsCρ over the set of functionsρ : S →
Q ∩ [0, 1] such that

(1)
∑

s ρs = F ,
(2) writing Sp

q
(ρ) := {s ∈ S : ρs = p

q
}, ∀p

q
∈ Q in lowest terms, the cardinality]Sp

q
(ρ)

is a multiple ofq, saykpqq,
whereCρ is given by the set of normalizedF -fermion wavefunctions whose coordinates
ψs1···sF satisfy

(1) ψs1...sF = 0 if ]{i : si ∈ Sp

q
(ρ)} 6= kpqp for somep

q
∈ Q, and

(2)
∑

s1...sF3s |ψs1...sF |2 = ρs , where ‘3’ stands for ‘containing’.

Proof. At the anti-integrable limit, after elimination ofu we have

W(9) = − 1
2

∑
s

ρ2
s (31)

where, restricting to theF -fermion subspace,

ρs =
∑

s1...sF3s |ψs1...sF |2∑
s1...sF
|ψs1...sF |2

. (32)

So

∂W

∂ψs1...sF
= −

∑
s

ρs
∂ρs

∂ψs1...sF
(33)

=
( S∑
s=1

ρ2
s −

F∑
i=1

ρsi

)
ψ̄s1...sF . (34)

Thus9 is a critical point iff for all s1 . . . sF either

ψs1...sF = 0 (35)
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or
F∑
i=1

ρsi = M :=
∑
s

ρ2
s . (36)

These conditions oblige all theρs to be equal (and hence toF
S

), unlessS decomposes into
disjoint subsetsSj , j = 1, . . . , J with the property that∃pj ∈ Z for j = 1, . . . , J such that∑
j pj = F andψs1...sF = 0 if ]{i : si ∈ Sj } 6= pj for somej . If such a decomposition

exists and is maximal, then condition (36) implies thatρ is constant on eachSj . But then
from (32),

∑
s∈Sj ρs = pj , soρs = pj

qj
on Sj , whereqj = ]Sj , the size ofSj . Finally if two

of the Sj have the same fermionic density then the corresponding critical set is a subset of
a larger one where these twoSj are merged into one. So every critical point belongs to one
of the setsCρ . SetsCρ with different functionsρ are disjoint. They are compact because
they can be viewed as closed and bounded subsets ofRn for somen. �

Probably each setCρ is also connected, but we did not prove this.
Note that the energies of the excited states are easy to compute at the anti-integrable

limit. The minima forF fermions onS sites have energy− 1
2F . Formation of a resonant

Q-tuplet with P fermions raises the energy byP(Q−P)2Q . This is at least14, the minimum
change being for the caseQ = 2, P = 1.

4. Review of homology index theory

In order to see how many critical points from the critical sets at the anti-integrable limit
survive general perturbation, and to make a good generalization of index to critical stratified
sets, we need a rapid tutorial on ‘homology index theory’, due to [Co] (cf section 3 of [An]).

The index of a non-degenerate critical point of aC2 function W : M → R on a
manifold M is the number of negative squares in the Lagrange canonical form for the
second variation ofW ; equivalently it is the dimension of the unstable manifold for the
negative gradient flow ofW , with respect to any Riemannian metric onM. On CPK we
choose the natural Riemannian metric, defined at a point9 ∈ CPK with homogeneous
coordinatesψk, k = 0, . . . , K by the inner product

〈ξ, η〉 = Re

(∑
ξ̄kηk −

∑
ξ̄iψi

∑
ψ̄j ηj /

∑
ψ̄kψk

)
. (37)

Then the negative gradient flow of a functionW : CPK→R is represented by

ψ̇k = − ∂W
∂ψ̄k

. (38)

The concept of index has various extensions. In particular each compact isolated setC

of critical points has a ‘homology index’ which is a functionγ from Z+ to Z+ : i 7→ γi , to
be defined shortly. First we give some examples. IfC is a non-degenerate critical point of
indexI thenγi = 0 for all i 6= I andγI = 1. If C is a normally hyperbolic submanifold for
the negative gradient flow ofW , of dimensiond, and with unstable manifold of dimension
d + I then

γi = 0 for i < I or i > d + I (39)

γI+j = βj for 06 j 6 d (40)

whereβj is thej th Betti number ofC, i.e. the dimension of the homology groupHj(C;R),
e.g. for ad-torus,βj is the binomial coefficient

(
d

j

)
. For an introduction to homology
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groups, see [NS]. In a nutshell,chains are linear combinations of ‘nice’ subsets with the
same dimension, andcyclesare chains whose boundary is zero; every boundary is a cycle
but not every cycle is a boundary; theith homology groupis the set of cycles of dimension
i modulo boundaries of(i + 1)-dimensional chains.

To give the general definition of homology index of a critical set, each compact isolated
setC of critical points has a compact neighbourhoodN (called anisolating neighbourhood)
and anε > 0, such thatC is the maximal invariant set inN under the positive and negative
gradient flow ofW , and if x[0, t ] is a trajectory of the negative gradient flow lying inN
with x(t) ∈ ∂N , t maximal, thenx(t, t + ε) ∩ N = ∅. The setE of such pointsx(t)
(considering all trajectoriesx) is called theexit set of N . Then γi is defined to be the
dimension of the relative homology groupHi(N,E;R). The relative homology group of
a topological spaceN modulo a subsetE is defined like the homology group ofN but
treating any subset ofE as 0.

For example, to compute the homology index of the equator in the one fermion on two
sites example of section 2, we can take as isolating neighbourhood the annulus between
the tropics of Cancer and Capricorn. Then the exit set is the union of the two tropics;
H2(N,E) is generated by the whole annulus,H1(N,E) by any arc joining the two tropics,
andH0(N,E) = 0. Thusγ0 = 0, γ1 = 1, γ2 = 1.

For homology index we adopt the notational conventionγ = [γ0, γ1, . . . , γn], wheren
is the least integer such thatγi = 0 for all i > n. So, for example, the homology index of
the equator in the one fermion on two sites problem isγ = [0, 1, 1].

The significance of the homology index, for our purposes, is that it gives strong
restrictions on what can happen to a setC of critical points on perturbation ofW . Think
of the perturbation as belonging to a continuous familyWε with W0 = W . Supposeε0 is
small enough that an isolating neighbourhoodN can be chosen forC such that no critical
points lie on∂N for anyε ∈ [0, ε0]. If all the critical points ofWε in N are non-degenerate
(as is the generic case) then the numbersci with index i satisfy the Morse inequalities

n∑
i=0

(−)icn−i >
n∑
i=0

(−)iγn−i for all n (41)

with equality in the top dimension. In particular, by taking the sum of two successive
inequalities,

cn > γn for all n. (42)

The difference between the left and right hand sides of (41) can be attributed to ‘unpaired
connecting orbits’ [Fl] (see [Sa] for a review).

In fact, the Morse inequalities apply even if some critical points inN are degenerate,
providedci is defined to be the sum of theith homology indices over any decomposition of
the set of critical points inN into isolated critical sets. This is useful to us because certain
perturbations we shall consider possess symmetries which lead to some submanifolds of a
submanifold of critical points being preserved.

The homology index also places restrictions on the result of interaction of two or more
isolated critical sets on perturbation. The unionU of the relevant critical sets plus all their
connecting orbits under the gradient flow is an isolated invariant set for the gradient flow,
so if we compute its homology index and it is not identically zero then at least some of the
critical points will remain, the numbers being restricted by the Morse inequalities again.

To compute the homology index of an isolated critical set there are several possible
procedures. For example, one can make a cell decomposition (as we will do for the
2
4-resonance in section 5.2). One can sometimes shorten the calculation by using exact
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sequences (e.g. [GH]), for exampleHi(A)→Hi(X)→Hi(X,A)→Hi−1(A) whereA is a
well chosen subset ofX and the maps are, respectively, those induced by inclusionA ⊂ X,
reduction moduloA, and the boundary map; but a calculation of the rank or nullity of some
boundary operators is usually still required, so the savings are not great. Or one can perturb
to a Morse function and choose a Riemannian metric such that all connecting orbits are
transverse and then compute the homology of the resulting Witten complex [Fl, Sa]; this
may sound as if it defeats the purpose of the exercise, but the idea is that by computing the
Floer homology for one perturbation of the function one obtains constraints on the numbers
of critical points for all small perturbations.

Note two useful facts: for a productX × Y of topological spaces,Hi(X × Y ) ∼=∑i
j=0Hj(X) ⊕ Hi−j (Y ), taking homology over a field (K̈unneth formula), and for an

orientable manifoldM of dimensiond, Hi(M) ∼= Hd−i (M) (Poincaŕe duality).

5. Near the anti-integrable limit

5.1. Simplest results

Near the anti-integrable limit, i.e. fort : c2 small (we shall again takec = 1 throughout
this section), all non-degenerate critical points persist, but we do not expect any critical
subsets of dimension greater than zero to be preserved. However, by homology index
theory, at least certain numbers of critical points must persist from each. For example, from
a (Q− 1)-torus at least 2Q−1 critical points persist, if non-degenerate.

Before analysing the details of how many critical points are preserved from each of the
critical sets of theorem 1, we remark that close enough to the anti-integrable limit, there are
no other critical points than those arising from anti-integrable critical sets. This is because at
the anti-integrable limit all the critical subsets are locally maximal. There existst0 > 0 and
a unionU of isolating neighbourhoods for the set of the critical points at the anti-integrable
limit such that fort < t0 all critical points inU are obtained by the above procedure. There
exists t1 ∈ (0, t0) such that outsideU the gradient ofW is too large att = 0 for critical
points to be created there whilet < t1. Hence fort < t1, all critical points are obtained by
the above procedure.

To compute the homology index of an isolated critical setCρ we need a suitable isolating
neighbourhoodN . For a singleP/Q resonance we can chooseN to be the pre-image of
a ball in ρ-space under the map9 7→ ρs =

∑
s3s |ψs |2, about the centre of the simplex

(the P/Q resonance corresponds to the single maximum inρ-space in the centre). Then
the exit set is the whole boundary∂N , and it remains only to decide on the homology of
N relative to∂N . A minor simplification can be achieved by noting that by inverting the
sign ofW , the exit set can be made empty, and so

Hi(N, ∂N) ∼= Hd−i (N) whered = dimN = 2

[(
Q

P

)
− 1

]
. (43)

Thus, for example (using the notation introduced in the previous section),
• a 1

2 resonance has homology indexγ = [0, 1, 1], becauseN ∼= I × T1,
• a 1

3 or 2
3 resonance has homology indexγ = [0, 0, 1, 2, 1], becauseN ∼= D2× T2,

• a 1
4 or 3

4 resonance has homology indexγ = [0, 0, 0, 1, 3, 3, 1], becauseN ∼= B3×T3.
Here, Bd denotes ad-dimensional ball. The generalization to 1/Q and (Q − 1)/Q

resonances,Q > 4, is obvious.
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Figure 3. The triangle defined by (44) for the24-resonance6. The edges have the equations
E2 : |ψ12|2 = 0, E3 : |ψ13|2 = 0, andE4 : |ψ14|2 = 0, respectively, minus the vertices.

5.2. The2
4 resonance

The simplest non-trivial case of a single resonance is the2
4 resonance. As described in

section 3 the equations for the24 resonance can be reduced to:

|ψ12|2+ |ψ13|2+ |ψ14|2 = 1
2 (44)

|ψ34|2 = |ψ12|2 (45)

|ψ24|2 = |ψ13|2 (46)

|ψ23|2 = |ψ14|2 (47)

modulo global phase shift. The first equation defines a triangle in the space of
|ψ12|2, |ψ13|2, |ψ14|2 > 0, illustrated in figure 3. Above each interior point of the triangle
is a five-torus, which collapses to a three-torus over each edge point and to a one-torus
(circle) over each vertex. The resulting object6 is not a manifold, because a local model
near any edge point isK × T3× I , as already remarked in section 3, whereK denotes the
cone over a two-torus.

To compute the homology of this seven-dimensional object, we use a cell decomposition.
A cell in a (Hausdorff) topological spaceX is a subset homeomorphic to an open ball of
some dimension, such that the homeomorphism has a continuous extension from the closed
ball intoX. A cell decompositionof X is a partition ofX into cells such that the boundary
of any cell is contained in the union of all cells of lower dimension (e.g. [Th]). The first step
in obtaining our cell decomposition is to decompose the triangle of figure 3 into its interior
1, its three edgesE2, E3, E4 and its three verticesV2, V3, V4. Next, the five-torus above
each point of1 is slit along five four-tori:θ34 = θ12, θ24 = θ13, θ23 = θ14, θ12 = θ24 and
θ13 = θ23 (modulo global phase shift), and the resulting intersections, where we introduce
the notation

θij = argψij . (48)

Note that our choice does not preserve permutation symmetry, but to do so would require
more subdivision. The three-torus above each point of each edge is slit along three two-tori
and their intersections; to match the slicing of the interior, we slitE2×T3 alongθ24 = θ13,
θ23 = θ14 and θ13 = θ23, E3 × T3 along θ34 = θ12, θ23 = θ14 and θ12 = θ13, andE4 × T3

alongθ34 = θ12, θ24 = θ13 andθ12 = θ23. This makes use of the slightly non-obvious fact
that the limit of θ12 = θ24 = θ13 as |ψ24|→0 is θ12 = θ13. Finally, the circle above each
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vertex is cut at one point; specifically,V3 × T1 is cut atθ24 = θ13, V4 × T1 at θ14 = θ23,
andV2× T1 at θ12 = θ34. The cells are assigned orientations, which we do not list here†.

This leads to the table 1 of cells, boundaries, cycles, representatives of homology,
and Betti numbers for6. Thus, using (43), the homology index of6 is γ =
[0, 0, 0, 1, 5, 7, 1, 0, 1, 0, 1]. In particular, the sum of the Betti numbers of6 is 16, so
perturbation leads to at least 16 critical points near6 (if non-degenerate).

As a consistency check, table 2 displays the homology indices for all the critical sets for
the problem of two fermions on four sites. There are six minima (e.g. with fermionic density
distribution 0011), 12 circles of index 1 (e.g.1

2
1
201), eight two-tori of index 2 (e.g.13

1
3

1
31

and 2
3

2
3

2
30), and the2

4 resonance6. The consistency check is that the Morse inequalities
for this decomposition into critical subsets hold, i.e. that all elements of the final column
are non-negative and the top one is 0.

5.3. The1
2 × 1

3-resonance

This is given by the equations (29) and (30). To compute its homology index, note first that
the submanifoldR given by (29) is invariant under the gradient flow, because from (34)
and (38),

ψ̇ij = − ∂W
∂ψ̄ij

=
(
ρi + ρj −

5∑
s=1

ρ2
s

)
ψij (49)

which is zero whenψij = 0. Furthermore, near the12 × 1
3-resonance,R is normally

hyperbolic, because at the resonance the normal components of the gradient flow evaluate
to

ψ̇12 = 1
6ψ12 (50)

ψ̇34 = − 1
9ψ34 (51)

ψ̇35 = − 1
9ψ35 (52)

ψ̇45 = − 1
9ψ45 (53)

and their complex conjugates. This gives two unstable directions:ψ12 and ψ̄12. So it is
enough to compute the homology index of the resonance inR and then shift the results up
two dimensions.

In R, (29) imposes the restrictions

ρ1+ ρ2 = 1 (54)

ρ3+ ρ4+ ρ5 = 1. (55)

Then the 1
2 × 1

3-resonance is the set of maxima ofW in R, becauseW = − 1
2

∑
ρ2
s is

maximized subject to these restrictions byρ1 = ρ2 = 1
2, ρ3 = ρ4 = ρ5 = 1

3. Thus it suffices
to compute the Betti numbersβi of the 1

2 × 1
3 resonance and then apply (43) to obtain its

homology index inR. Now dimR = 10, hence the homology index in the whole space is
γi = β12−i .

This reduces the problem to computing the Betti numbers of the resonance. We already
showed that it is a submanifold and of dimension seven. It is also orientable because the
subset where allψij 6= 0 is diffeomorphic toD2 × T5 and the rest is a union of cells of
dimensions five or less. Thus we haveβ0 = β7 = 1 andβi = β7−i . The computation
analogous to table 1 is tedious, however, and we were not able to determine any more Betti

† Many of the orientations can be inferred from table 1.
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Table 2. The Betti numbers forCP 5, and the homology indices for all the critical subsets at
the anti-integrable limit. The penultimate column gives the sum over the critical sets of the
homology indices at dimensioni, and the final column gives the excess of the alternating sum
of the homology indices up to dimensioni for the sum of the critical sets over that for the Betti
numbers ofCP 5.

i CP 5 6 min 12T1 8 T2 6
∑
γi Excess

10 1 0 0 0 1 1 0
9 0 0 0 0 0 0 0
8 1 0 0 0 1 1 0
7 0 0 0 0 0 0 0
6 1 0 0 0 1 1 0
5 0 0 0 0 7 7 0
4 1 0 0 8 5 13 7
3 0 0 0 16 1 17 5
2 1 0 12 8 0 20 12
1 0 0 12 0 0 12 7
0 1 6 0 0 0 6 5

numbers with confidence. It would be particularly interesting to know them, as it could
give insight into whether a product resonance can in some way be regarded as a (tensor)
product.

5.4. Some general rules

The reduction of the computation of homology index of a product resonance to that of its
homology generalizes in many cases.

Theorem 2.Given r ∈ N and positive integersPj ,Qj , j = 1, . . . , r, such thatPj/Qj are
distinct and

∑
njPj/Qj 6= 0 whenevernj ∈ [−Pj ,Qj−Pj ] is a collection of integers not all

zero satisfying
∑
nj = 0, then the homology indexγ of a P1/Q1× · · ·×Pr/Qr -resonance

is given in terms of its Betti numbersβ by

γi = βL−i (56)

where

L = 2

(
A+

∏
j

(
Pj
Qj

)
− 1

)
(57)

andA is the number of collections(nj ) above such that
∑
njPj/Qj > 0.

Proof. Without loss of generality, letF =∑Pj , S =
∑
Qj , and choose a decomposition

of the network into subsetsSj of sizeQj , j = 1, . . . , r. The product resonance lies in the
submanifoldR whereψs1...sF = 0 wheneverkj := ]{i : si ∈ Sj } 6= Pj for somej . The
submanifoldR is invariant under the gradient flow because

ψ̇s1...sF =
(∑

i

ρsi −
∑
s

ρ2
s

)
ψs1...sF . (58)

It is normally hyperbolic near the product resonance, because at the resonance∑
s

ρ2
s =

∑
j

P 2
j /Qj (59)
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and ∑
i

ρsi =
∑
j

kjPj/Qj . (60)

Thus the ‘exponent’ from (58) is∑
i

ρsi −
∑
s

ρ2
s =

∑
j

(kj − Pj )Pj/Qj . (61)

For a normal component toR, kj 6= Pj for somej ; but
∑
j kj =

∑
j Pj . Thus the number

of unstable dimensions fromR is 2A.
The complex dimension of the space ofψs1...sF with Pj suffices inSj for eachj is∏(
Qj
Pj

)
. ThusR is CP J with J =∏(

Qj
Pj

)
− 1. HenceL = 2(A+ J ). �

If there exists(nj ) not all zero such that
∑
j njPj/Qj = 0, then further analysis is

required. The simplest example of this is the1
4 × 1

2 × 1
3-resonance.

We did not find a way yet to compute the homology of the generalP/Q-resonance, nor
the general product resonance.

6. At and near the integrable limit

In this section, we switch attention to the opposite limit in parameter space, namely the
integrable limitc2 : t = 0. Then all critical points haveus = 0 for all s, and the energy
is just a quadratic function of the fermionic variables. If{Ei}i=1...S is the single fermion
spectrum, then theF -fermion spectrum consists of all sums

∑
k of F differentEi . There

are

(
S

F

)
choices. If all the

∑
k are distinct, then arranging them in increasing order we

obtain one critical point of the total energy for each choice, and thekth choice has index
2(k − 1). This is because the energy is a Hermitian form, so the index increases by one
complex dimension (i.e. by two real dimensions) at each critical point.

Often there are degeneracies. For example, for a one-dimensional chain, or ring with
no preferred direction, theEi come in degenerate pairs corresponding to wavenumbers±k
(except for the states with wavenumber 0 orπ ). This modifies the above picture, giving a
critical CPm−1 if m F -fermion states are degenerate, instead of isolated critical points.

Non-degenerate critical points all persist on small perturbation, which includes the
effect of adding small fermion–phonon coupling. Typical small perturbation breaks the
degeneracy of criticalCPm−1 manifolds (m > 1), however. Nonetheless, as they are
normally hyperbolic for the gradient flow, they continue as invariant submanifolds of the
gradient flow. Then the numbers of critical points on such a submanifold are constrained by
the Morse inequalities forCPm−1. For c2 : t small, the simplest scenario is that precisely(
S

F

)
equilibrium states persist, one of each even index between 0 and 2

((
S

F

)
− 1

)
.

This is the situation that we would expect unless there are symmetries which preserve some
of theCPm−1 or some submanifolds within them.

7. Effects of spin, magnetic fields and electron–electron interaction

In this section, instead of spinless fermions we treat spin1
2 fermions, which we callelectrons.

This means that we have creation and annihilation operatorsa
†
sσ , asσ , for eachs ∈ S and
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σ ∈ {↑,↓}, number operators

nsσ = a†sσ asσ (62)

and in the Hamiltonian (1) we take

ns = ns↑ + ns↓ (63)

and1 to be an off-diagonal Hermitian operator which allows electrons of both spins to
hop, e.g.

1 =
∑
〈s,r〉,σ

a†r,σ as,σ + a†s,σ ar,σ (64)

where 〈s, r〉 represent nearest-neighbour pairs. The space of electron states forF↑ up-
electrons andF↓ down-electrons onS sites has one complex dimension for each way of
arranging them with at most one up-electron and one down-electron on each site. As usual,
two states can be regarded as equivalent if they differ only by multiplication by a non-zero
complex number.

In contrast to the spinless case, we can have degenerate local minima for spin1
2 electrons

at the anti-integrable limit. For example, any anti-integrable configuration withP > 1
polarons (singly occupied sites) andD := |F↑ − F↓| 6= P , has a spin degeneracy. There
are

J =
(

P
P−D

2

)
(65)

ways of distributing the spins among the polarons. This gives a criticalCP J−1 of index 0.
In [AAR] (and [BM1]), this spin degeneracy was not a problem, because it was possible

to treat electronic configurations as equivalent if they give the same electronic density
distribution, regardless of spin. Then the criticalCP J−1 collapses to a non-degenerate
critical point. Since this can be done fort 6= 0 too, the critical point has a locally unique
continuation, and so theCP J−1 continues as a submanifold of critical points.

Various effects, however, can break the spin degeneracy. The simplest is the Zeeman
effect in a magnetic field. This adds

∑
s Bs(ns↑ − ns↓) to the Hamiltonian. If the magnetic

field Bs is uniform, then [AAR] managed to circumvent the spin degeneracy again, by
reducing to a problem in electronic density only, as the Zeeman effect is the same on all
states with given numbersF↑ andF↓ of electrons. But we can treat the case of non-uniform
field just as easily. For uniform magnetic field the criticalCP J−1 of index 0 just discussed,
is unchanged, except in energy. It continues fort 6= 0 and/or perturbations from uniform
magnetic field, to an invariantCP J−1 for the gradient flow, but no longer consists entirely
of critical points. But, by the same arguments as in the rest of this paper, we deduce that
it contains at leastJ critical points if non-degenerate.

A particularly interesting and important effect which breaks the spin degeneracy
is electron–electron interaction. For example, suppose we add a Hubbard interaction∑

s Uns↑ns↓ to the Hamiltonian. This does not affect the positions of the critical points at
the anti-integrable limit, apart from changing their energy (which is raised byU for each
bipolaron). But fort 6= 0, the criticalCPJ−1 of index 0 above continues to an invariant
CP J−1 for the gradient flow, and again we deduce that it contains at leastJ critical points if
non-degenerate. However, the Hubbard interaction preserves the overallSU(2) symmetry of
simultaneous rotation of all spins. Thus, for example, the familiar triplet states degeneracy
for two-electron states is preserved, which leads to criticalCP 2 submanifolds, and there
are analogous degeneracies for more electrons.
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Similar results hold for critical subvarieties of index greater than 0. In particular, we
obtained by explicit calculation in June 1992 an equilibrium state which Aubry called a
‘spin resonant bipolaron’ [Au1].

Other forms of electron–electron interaction can also be treated, for example, a repulsion
between electrons on neighbouring sites (even in the spinless case):

∑
s U2nsns+1.

8. Discussion

We have located all the critical points of the energy for the adiabatic Holstein model at the
integrable and anti-integrable limits, and shown how they behave near both these limits.
The key idea was, in contrast to [AAR], first to minimize the energy with respect to the
phonon variables and then to study the resulting function of the fermionic variables. We
did this in detail in the case of spinless fermions, but showed that the case with spin is
similar. The number of critical points at the anti-integrable limit vastly exceeds that at
the integrable limit, many of them forming connected critical sets. We were able to show
that many critical points survive perturbation to small fermion hopping, by studying the
homology index of the isolated critical sets with respect to the gradient flow of the energy,
though the calculation of the minimum number that must survive from each isolated critical
set remains to be completed. As the electron hopping amplitude increases there must be a
massive sequence of bifurcations annihilating the excess critical points (generically in pairs
but pitchforks can also be expected under various symmetries). It would be very interesting
to study the bifurcations numerically.

The use of symmetries would lead to simplifications in the analysis, which we did not
discuss. In particular, the intersection of each of our critical sets at the anti-integrable
limit with a symmetry class will have its own Betti numbers, and hence an associated
number of critical points with that symmetry will persist. Sometimes restriction to a
symmetry class lifts the degeneracy completely, so the anti-integrable critical sets with
given symmetry are isolated non-degenerate critical points in their symmetry class, which
persist straightforwardly by the implicit function theorem. This idea has been used to good
effect by [Pr].

Our analysis has been for finite systems. An important open question is whether an
isolating neighbourhood for a given resonance can be found for a range of electron hopping
amplitudet which is uniform in the system size.

Instead of using the gradient flow of the energy function, an alternative approach to
finding critical points persisting from an isolated critical submanifold is to choose a local
coordinate system for which it is a graph, then prove persistence of each of its points to
a point which is critical with respect to normal variations, which is easy to do uniformly
in the size of the network (cf variational approach to Melnikov’s method for continuation
of periodic orbits from a manifold of degenerate ones, proposed in [Mac] and developed
in [Au2, AMS]), and deduce that the resulting function on the unperturbed critical set has
at least some number of critical points. To analyse the effect of perturbation on critical
sets which are not submanifolds, however, we see no replacement for the gradient flow
approach.

We have generalized the ideas to allow electron–electron interaction. An interesting
question is whether our procedure extends to the case where the phonon variables are made
quantum mechanical operators. If so, the results would provide a mathematical framework in
which to develop Aubry’s ideas on highTc superconductors [Au1]. The quantum mechanical
analogue of our elimination of the phonon variables is the Lang–Firsov transformation, as
discussed by Aubry, and it would be interesting to see whether this route can be pursued.
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