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Abstract. The adiabatic Holstein model describes interaction of electrons with classical
phonons. Near the anti-integrable limit, where electron—phonon coupling dominates electron
hopping, Aubry, Abramovici and Raimbault (1992Stat. Phys67 675-780) found many local
minima of the energy, while at the opposite limit, called integrable, there is only one equilibrium
for each choice of mean electronic density. To eliminate the excess local minima on passing
from the anti-integrable to the integrable limit, there must be bifurcations with other critical
points of higher indexexcited statesIn this paper, we find all the critical points of the energy

at the two limits. We find that at the anti-integrable limit the excited states form submanifolds
and stratified sets of various types, which we call resonances. We show that homology index
theory implies that at least certain numbers of critical points from each resonance survive small
perturbation from the anti-integrable limit. We calculate these numbers explicitly for some
simple cases, and derive some general rules. The complete homology calculation in the general
case and the study of the bifurcations on the route to the integrable limit are left for the future.
We conclude by generalizing the approach to allow electron spin, magnetic fields and electron—
electron interactions.

1. Introduction

The Holstein model [Ho] describes systems in which fermions can hop between sites of a
network S and interact with phonon variables on the sites but not with each other except
via Pauli’'s exclusion principle. In the adiabatic limit, the phonon variables are regarded as
classical and motionless. The physical relevance of this limit can be questioned, but the
large ratio between atomic and electronic masses makes it a reasonable starting point. We
denote the phonon variable on siteby u,. The Hamiltonian for the adiabatic Holstein
model is

H=Y Ju’+h (1)

with
= chsus —tA. 2)

Here
ny = alas (3)
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the number operator on sitefor fermions, with creation and annihilation operatafsas
respectively, satisfying the anticommutation relati¢®s a,} = {a,T , ai} =0, {a,T ,ag) =8,
and A is an off-diagonal Hermitian ‘hopping’ operator, i.e. preserving the total number

N=>"n (4)

but not the individual numbers;, e.g.

A= aj dag 5)
)

(r,s

over nearest-neighbour paifs, s) when S is a graph. For simplicity, in the first six
sections of this paper we consider spinless fermions. To treat electrons, the effects of
spin are included in section 7, where we also allow magnetic fields and electron—electron
interactions.

There are two parameters: represents fermion—phonon coupling andepresents
fermion hopping amplitude. It is easily seen that only the rafio ¢ plays a role. The
limits ¢ : t+ = 0 andr : ¢ = 0 are called by [AAR] the ‘integrable’ and ‘anti-integrable’
limits, respectively, by analogy with problems in Hamiltonian dynamics.

A state of the Holstein model is specified by giving a function S — R and a
one-dimensional subspade of the complex Hilbert spac spanned by all vectors of the
form a;Ll .. .ajk|(/)) for any choice of set of distinct sites. . .s; with £ < §, the number of
sites inS, where|@) is a ‘vacuum state’ withu|@#) = 0 for all s € S. TheenergyW of a
state(u, W) is the expectation of the Hamiltonian in that state, i.e.

1 h
W, W) =3 Suf+ % (6)

wherey is any non-zero element of (note that the result is independent of the choice
of representativey € W). For an infinite systemW might not be well defined, but
its derivative with respect to the state, ¥) is well defined, as is usual in variational
problems. Theequilibrium statesare the critical points of the energy.

Aubry, Abramovici and Raimbault [AAR] found all the local minima of the energy
for the adiabatic Holstein model at the anti-integrable litni= 0) and showed that they
have locally unique continuations for smallproof improved by [BM1] and extended to
non-zero temperature electrons in [BM2]), and have finite coherence length (proof improved
in [BM3]). In those papers, the term ‘equilibrium state’ was reserved for local minima. It
is clear by topological arguments, however, that there must be other critical points of the
energy, for example minimax points. In this paper, we find them all.

The HamiltonianH commutes with the total number operatbf, so without loss of
generality we can restrict attention to the subspaces with a definite number of fermions. We
restrict attention to finite systems, withsites andF fermions. It is an open question to
what extent our continuation results from the anti-integrable limit can be made uniform in
SandF.

First, note that the space of fermionic states is topologically equivaler &, where

K=<§)_1 )

t Complex projectivek -spaceCPX is the quotient ofCX+1\{0} under the equivalence relatian ~ A1 for all
A € C\{0}.
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because the space of antisymmetFifermion wavefunctions ovef sites is linear with
complex dimension

s s
<F>:F!(S—F)!‘ (®)

Secondly, the energy grows quadratically as any ofuthgo to infinity. Hence the energy

is a proper function fromRS x CPX to R, meaning that the inverse image of a compact
set is compact. Furthermore, the negative gradient of the energy is inward on the boundary
of a suitable large compact subseiof RS x CPX; in fact, we know that all critical points

must havex € [—c, 0], because they satisfy

w=—cp ©)

where p, is thefermionic densityon sites, which liesa priori in [0, 1][AAR]. So we can
take B to have the formfc—e¢, £]¥ x CPX for somes > 0. It follows that the numbers
of critical points of W of index i, if all non-degenerate, must satisfy the Morse inequalities

(e.g. [NS]):
Y (e =D (VB for each 0< i < 2K (10)
j=0 =0

with equality fori = 2K, whereg; is theith Betti number ofB, which is the same as that
for CPK, i.e.

(11)

1 if 0 <i < 2K is even
hi 0 if i is odd.

In particular, by adding the inequalities for= 2k and Z — 1, there must be at least one

S

F

critical points of index 0 at and near the anti-integrable limit, there must be atleestical

points of index 1, if non-degenerate. Even if the critical points are not all non-degenerate,
topological arguments (such as the minimax principle or Liusternik—Schnirelman theory,
e.g. [Sc], or homology index theory, which we will discuss in section 4) show that there
must be other critical points.

In this paper we show where these other critical points are, for parameter values at
and near the anti-integrable limit. We find that there are many degenerate critical points
which are not local minima; they form submanifolds or, more generally, ‘stratified sets’.
Furthermore, we show that the theory of ‘homology index’ for an isolated critical set
implies that at least certain numbers of critical points survive small perturbation. We also
find where all the critical points are at and near the integrable limit. This picture will help
in understanding how the equilibrium states bifurcate on passing from the anti-integrable to
the integrable limit.

The plan of the paper is as follows. In section 2, we analyse a simple pedagogical case:
one fermion on two sites in the whole of tlie ¢) parameter space. Then in section 3 we
address the general case Bffermions onS$ sites at the anti-integrable limit: ¢? = 0.

We review homology index theory in section 4, and compute it for a range of critical sets
in section 5 and derive some general results. In section 6 we address briefly the opposite
limit ¢? : ¢+ zero or small. In section 7 we address the effects of spin, magnetic fields and
electron—electron interaction. The paper concludes with a discussion in section 8.

critical point of each even index2 Furthermore, since from [AAR] there ake+1 =

1 For a reminder of the definition of the index of a non-degenerate critical point, see the beginning of section 4.
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2. A simple case: one fermion on two sites

We begin by analysing a simple case= 2, F = 1. We writey, for the complex amplitude
of the fermion on sites, and without loss of generality we suppose the wavefunction is
normalized:

[Y1l? + [P2* = 1. (12)
Then

W = Zuf + Jub + cur|yal? + cuzlyal? — t (Yaha + Yavp2). (13)
Completing the square gives
W = 3(us+ Y119 + Juz + clv2l? = 3(Yal* + W2l — t Wz + Yay2).  (14)

So theu-dependence is quadratic, and at all critical points the first two terms vanish. Thus
we are left with

W = —3c2(ynl* + 12l — (a2 + Yap2). (15)

After identifying pairs(y1, ¥») which differ by a global phase factor, the space of fermionic
degrees of freedom becom€&s?!, which is the Riemann sphere. One can use spherical
coordinateg#, ¢) as follows:

0 i
wlzcosz,wzze'“’smz for0<6 <m ¢eT=R/2n7Z

_ P 0 (16)
wlze"wcosz,wzzsinz for0<6<mgeT!

which agree in the overlap zone06 < 7 up to a global phase factor. In these coordinates,
W becomes

W = —1c2(1 - Lsirf0) — ¢ cosy sine. 17)

Fort = 0, the critical points inCP* are two minima ab = 0 andx respectively (the north

and south poles), corresponding to putting the fermion on one site or the other, and a circle
of maxima atd = 7 /2 (the equator), corresponding to making a ‘resonant pair’ where the
fermion spends half its time on each site.

This circle of critical points is ‘normally hyperbolic’ [Fe] for the negative gradient flow
of W. Following Bott [Bo] we define théndex of a submanifold of critical points, if it is
normally hyperbolic for the negative gradient flowf, to be the dimension of the unstable
manifold of any of its points, in other words, the dimension of the unstable manifold of
the critical submanifold minus its own dimension. Thus this circle of critical points has
index 1.

Fort non-zero, the degeneracy is lifted. The equator is still invariant under the gradient
flow, but only the pointg = 0 andsw remain critical; they are of index 1 and 2 respectively.
As r increases, the minima at the poles migrate along the semigireled according to

sing = +2¢/c? (18)

until r = %cz, when they coalesce with the index 1 point and it becomes of index O.
Thereafter, ag continues to increase, or equivalently @aslecreases, the critical points
remain just one of index 2 @& = n/2, ¢ = 7 and one of index 0 & = n/2, ¢ = 0. At
the integrable limitu; = u, = 0 for both critical points and they correspond to the two
eigenstates for the fermion.

The sequence of events is sketched in figure 1.
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Figure 1. Critical points of the energy on the Riemann sphere for one fermion on two sites for

three values of : ¢2. (a) ¢ = 0 (anti-integrable limit), 1§) 0 <7 :¢c? < 3, () r: ¢? > 1.

3. The anti-integrable limit

Having seen what happens for the special case of one fermion on two sites, we now proceed
to the general case df fermions onS sites. In this section we study the anti-integrable
limit in parameter space, where ¢? = 0; without loss of generality we put= 1.

At the anti-integrable limit, there ar S) local minima, given by choosing' out of

F
the S sites to be occupied and the remainder unoccupied. The main point of this paper is
that there are also critical points of higher index. They come in isolated subsets, some of
which are differentiable submanifolds but many of which are only ‘stratified sets’ (to be
defined shortly). They arise by formation of groups of ‘resonant’ sites. We will proceed by
examining a few cases and then formulate a general theorem.

The simplest case is resonant pairs, generalizing section 2. If a pair of sites is chosen to
be ‘resonant’, witho, = —u, = % and the remaining’ — 1 fermions are put o’ — 1 of the
remainingsS — 2 sites as desired, then one obtains a critical circle of index 1. Itis a circle of
critical points because the relative phase of the fermion wavefunction on the resonant pair
of sites is arbitrary. It has index 1 because at the anti-integrable limit there is no coupling
between sites, so the resonant pair can be treated as in section 2. We call such a circle

of critical points a %—resonance’. The number of such critical circles(i§ S P 1),

using the multinomial notation

S S!
= . 19
(”1 rk) ral oo (S =30 ) (19)
Similarly, critical two-tori of index 2 occur by choosing a triple of sites to be
resonant, withp;, = —u; = % (or %), and putting the remaining” — 1 (respectively,
F — 2) fermions onF — 1 (F — 2) of the remainingS — 3 sites. This can be done in

S S . . - .
<3 F_ 1) + <3 Fo 2) ways. Each choice gives a critical two-torus which

we call a% or % resonance, respectively. The case of one fermion on three sites has

index two because completing the square as in section 2 Idfavees—% 3" p? at the anti-
integrable limit, withp, = |v,|2, and the constrain}_ p, = 1. Subject to this constraint,
W is maximum when all threg, = % which defines a two-torus after identifying states
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which differ only by a global phase shift, and has unstable manifold of dimension four,
hence index two. The same result can be obtained in the case of two fermions on three
sites by fermion—hole symmetry.

Critical manifolds of index 3 occur in several ways. One can put one or three fermions
on a resonant quadruplet with = —u, = 1 or 2 respectively, the remaining fermions
being put onF — 1 (resp. F — 3) of the remainingS — 4 sites. Each choice gives a critical
three-torus of index 3, called A or 2 resonance.

Alternatively, one can put two fermions on a resonant quadruplet with —u;, = %
and the remainingFF — 2 on any choice of the remaining — 4 sites. There are

<4 s P _2) ways of doing this. Each of these choices gives a connected set of

critical points called %—resonance, which is not a submanifold as it has some singularities,
but nonetheless can be regarded as being seven-dimensional and of index 3, as follows.
To see the structure of t@resonance, the space of two-fermion states on a set of four

sites has complex dimensi<n;') — 1 =5, with homogeneous coordinates,, V13, V14,

Yos, Vo4, V3a, SAY, Wherey;; corresponds to applying the creation opera:t,&} to the

vacuum. For convenience, we will impose the normalization condidony;;|?> = 1. The
resonance condition imposes the restrictions

p1 = V12l + [Yaal® + [Y1a® = 3 (20)

p2 = |12 + [Waal” + [Yoal® = 5 (21)

p3 = Y13l + [Vasl” + [Vl = 3 (22)

pa = |14l + [Vaal” + [Yaal® = 3. (23)
Taking 1[(20) + (21) + (22) — (23)] yields

112l + [Yraal® + [¥23® = 3. (24)
Subtracting (20) from this, we obtain

[Y14l® = [Y23]”. (25)
Similarly

|[Yaal® = |12l (26)
and

W24l = Y13l (27)

Thus for non-zero choices af1,, Y13, Y23 on the five-sphere (24) we have a three-torus
given by (25)-(27) (with angles atfy 4, argys4, argy»4) which reduces to a two-torus on
elimination of global phase rotation. Hence 1615, V13, V23 # 0, the%1 resonance is locally

a seven-dimensional submanifold. But ngag = O, for example, withy13 23 # 0, it has
locally the structure oK x T2 x I, whereK is a cone over a two-torus,

K = {(Y12, Y3a) € C?: [Yr10]® = [Yaal?), (28)

T¢ denotes ad-torus andl an interval. This is because giveiWi,, ¥34) € K and
l¥13l € (0,1/4/2), then (24) determinegy,s| and (25), (27) give a four-torus, which
reduces to a three-torus on elimination of global phase rotation.

Thus the%—resonance isiot a submanifold. Instead it is atratified set meaning
a locally finite disjoint union of smooth submanifolds of various dimensions (called the
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‘strata’), such that ify and V are strata and the closute intersectsV thenV c U, with

for each stratum an algebraic local model for the neighbourhood of any point of the stratum
(see [Mat] for a more general definition). In the case of §h£esonance, the strata are a
seven-dimensional submanifolar{,, ¥13, 23 # 0), three four-dimensional submanifolds
(Y12 = 0, Y13, Y23 # 0 and permutations) and three circlegig{ = 0, ¥13 = 0, Y23 # 0 and
permutations) (look ahead to figure 3). We definedimensionof a stratified set to be the
maximum of the dimensions of its strata, giving seven for%htesonance.

Bott's definition of index (section 2) does not generalize easily to stratified sets, as in
general they are not normally hyperbolic (nor even submanifolds). In the case of a repelling
stratified set, however, it is natural to define its index to be its codimension. ThL% the
resonance has index 3 because it corresponds to a maximuvh -ef—3 S pZinthe
space where_ p, = 2, so is repelling, and the total fermionic space has (real) dimension
10. In the next section we will show a better generalization of the definition of index of a
critical set.

Another type of critical set can be obtained by taking several resonant tuples with
different fermionic densities. The simplest case is that of a resonant pairpwei:tr% and
a resonant triple withp = % (% is similar). This gives a critical set of dimension seven
which turns out to be a differentiable submanifold. We call % & % product resonance.

To show that it is a submanifold, suppose without loss of generalityhat p, = % and
03 = P4 = p5 = % Its equations are (modulo global phase rotation)

Yo=Yz =Yz =Yss=0 (29)
and
lYisl2 + Iyl + s = 5
+ + +
lWasl? + |Yal? 4+ |yl = 1. (30)
oo
3 3 3

This defines a two-dimensional hexagon in the spaci/gf?, illustrated in figure 2. The

set of points of the% X %—resonance projecting to any disk in the interior of the hexagon
is diffeomorphic toD? x T®, where D? denotes a closed two-dimensional disk. The set of
points projecting to a thin strip including an edge of the hexagon and neighbourhoods of its
endpoints is a-bundle overD? x S%, whereS? denotes al-sphere, because without loss

of generality choose the edgg13|?> = 0; then fore > 0 we have{yis : |¥13? < €} = D?,

l¥231> = 3 — [¥13? gives a circle for eachys (if € < 1) which we reduce to a point by
global phase rotationy2a|?+¥2s|? = £+[y13l? gives arS® for eachyr13, and the equations

|V1al” = 3 — |W24l® and [y15]* = 3 — |25 give aT? for each(Vis, Yaa, Y25) € D? x S
(if € < 3). Alternatively, the strip can be viewed asl3-bundle overD? x S? by applying
the global phase rotation to tt§ instead of the circle.

It is clear that these constructions can be continued, giving critical sets of a huge variety
of types, consisting of collections of resonaittuplets with densityo, = —u;, = P/Q for
any integersP, Q such that 2< Q < M and O< P < Q. In particular, for a large system,
any sequence of rational densities can be obtained locally. Note that the ¢#¥emd
(Q —1)/0 give (Q — 1)-tori of index Q — 1.

It is also clear that formation of resonant sets is the only way to make critical points at
the anti-integrable limit, other than the local minima. In outline, this is because all critical
points must satisfy, = —u,, and for any siter for which u; is distinct from the values at
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Yy3=0

Vi3=0

Figure 2. The space of squared amplitudes of the components of the wavefunction for the

1 x %-resonance is a hexagon.

all other sites, the fermionic stationary states all haye- 0 or 1. We formulate this as a
theorem.

Theorem 1.The critical set at the anti-integrable limit in thé-fermion subspace, is the
disjoint union of compact isolated critical sef§, over the set of functionp : S —
Q N [0, 1] such that

(1) Zs Ps = F,
(2) writing Sz (p) :={s € §: p; = [}, V2 € Q in lowest terms, the cardinalityS: (o)
is a multiple ofg, sayk,,q,
whereC, is given by the set of normalizefi-fermion wavefunctions whose coordinates

VYs,..sp SAtiSty
1) Ysy.5, =01iF 8{i 1 s; € Sg (p)} # kpqp for somef €@, and

(2) Zsl...sFas |1psl___“.|2 = ps, Where 5’ stands for ‘containing’.
Proof. At the anti-integrable limit, after elimination of we have
WW) =-3) 0’ (31)
N

where, restricting to thé -fermion subspace,

2
_ le...xp EX | I//51»»-SF |

Zsl,,,sl,- |‘(/151...SF |2
So
aW 3
=-2_n (33)
awsl---SF s awsl...u

S F
= (Z:Osz - Zp3;>ws1...3p~ (34)
s=1 i=1
Thus W is a critical point iff for alls; ... sr either
wsl...s,r =0 (35)
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or

F
Do =Mi=) ol (36)
i=1 s

These conditions oblige all the, to be equal (and hence 1%)), unlessS decomposes into
disjoint subsetsS;, j =1, ..., J with the property thaBip; € Z for j =1, ..., J such that

Zi pi = Fandy, ,, =0if g4{i :s; € S;} # p; for some;. If such a decomposition
exists and is maximal, then condition (36) implies tpais constant on each;. But then

from (32),)_cs, os = pj, SO P = i]’—/f on S;, whereg; = 1;, the size ofS;. Finally if two

of the S; have the same fermionic density then the corresponding critical set is a subset of
a larger one where these tv$p are merged into one. So every critical point belongs to one
of the setsC,. SetsC, with different functionsp are disjoint. They are compact because
they can be viewed as closed and bounded subse®$ &dr somen. O

Probably each sef, is also connected, but we did not prove this.

Note that the energies of the excited states are easy to compute at the anti-integrable
limit. The minima for F' fermions onS sites have energy%F. Formation of a resonant
Q-tuplet with P fermions raises the energy BY$-2.. This is at least;, the minimum
change being for the cage = 2, P = 1.

4. Review of homology index theory

In order to see how many critical points from the critical sets at the anti-integrable limit
survive general perturbation, and to make a good generalization of index to critical stratified
sets, we need a rapid tutorial on ‘homology index theory’, due to [Co] (cf section 3 of [An]).

The index of a non-degenerate critical point of @ function W : M — R on a
manifold M is the number of negative squares in the Lagrange canonical form for the
second variation oW ; equivalently it is the dimension of the unstable manifold for the
negative gradient flow ofV, with respect to any Riemannian metric h. On CPX we
choose the natural Riemannian metric, defined at a point CPX with homogeneous
coordinatesy;, k =0, ..., K by the inner product

(6.m) = Re(zfgﬂlk_Zéil/fiz%nj/zlﬁkwk>~ (37)
Then the negative gradient flow of a functidh: CPX —R is represented by
I.p aWw
k = ——.
Yk
The concept of index has various extensions. In particular each compact isolated set
of critical points has aHomology indexwhich is a functiony fromZ, to Z, : i — y;, to
be defined shortly. First we give some examplesC lis a non-degenerate critical point of
index I theny; = 0 for alli # I andy,; = 1. If C is a normally hyperbolic submanifold for

the negative gradient flow dV, of dimensiond, and with unstable manifold of dimension
d + I then

(38)

;=0 fori <lori>d+1 (39)
Yi+i =B forO<j<d (40)
whereg; is the jth Betti number ofC, i.e. the dimension of the homology groéf(C; R),

e.g. for ad-torus, g; is the binomial coefficien(‘;). For an introduction to homology
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groups, see [NS]. In a nutshetthains are linear combinations of ‘nice’ subsets with the
same dimension, andyclesare chains whose boundary is zero; every boundary is a cycle
but not every cycle is a boundary; tiila homology groups the set of cycles of dimension

i modulo boundaries ofi + 1)-dimensional chains.

To give the general definition of homology index of a critical set, each compact isolated
setC of critical points has a compact neighbourhaédcalled anisolating neighbourhood
and ane > 0, such thatC is the maximal invariant set itv under the positive and negative
gradient flow of W, and if x[0, 7] is a trajectory of the negative gradient flow lying v
with x(r) € aN, t+ maximal, thenx(s,t +¢€) N N = . The setE of such pointsx(z)
(considering all trajectories) is called theexit setof N. Theny; is defined to be the
dimension of the relative homology grouf (N, E; R). The relative homology group of
a topological spac&v modulo a subseE is defined like the homology group df but
treating any subset of as 0.

For example, to compute the homology index of the equator in the one fermion on two
sites example of section 2, we can take as isolating neighbourhood the annulus between
the tropics of Cancer and Capricorn. Then the exit set is the union of the two tropics;
Hy(N, E) is generated by the whole annulué,(N, E) by any arc joining the two tropics,
and Hy(N, E) =0. ThUS)/o =0, Y11= 1, Y2 = 1.

For homology index we adopt the notational conventioe: [y, 41, . . ., Y], Wheren
is the least integer such thgt =0 for all i > n. So, for example, the homology index of
the equator in the one fermion on two sites probleny is: [0, 1, 1].

The significance of the homology index, for our purposes, is that it gives strong
restrictions on what can happen to a éebf critical points on perturbation o. Think
of the perturbation as belonging to a continuous fanily with Wy = W. Supposeg is
small enough that an isolating neighbourhadgdcan be chosen fo€ such that no critical
points lie ond N for anye € [0, ). If all the critical points of W, in N are non-degenerate
(as is the generic case) then the numhenwith index i satisfy the Morse inequalities

Y (e =Y (D) v for all n (41)
i=0 i=0

with equality in the top dimension. In particular, by taking the sum of two successive
inequalities,

Ch Z VY for all n. (42)

The difference between the left and right hand sides of (41) can be attributed to ‘unpaired
connecting orbits’ [FI] (see [Sa] for a review).

In fact, the Morse inequalities apply even if some critical pointsVirare degenerate,
providedc; is defined to be the sum of thith homology indices over any decomposition of
the set of critical points inV into isolated critical sets. This is useful to us because certain
perturbations we shall consider possess symmetries which lead to some submanifolds of a
submanifold of critical points being preserved.

The homology index also places restrictions on the result of interaction of two or more
isolated critical sets on perturbation. The unigrof the relevant critical sets plus all their
connecting orbits under the gradient flow is an isolated invariant set for the gradient flow,
so if we compute its homology index and it is not identically zero then at least some of the
critical points will remain, the numbers being restricted by the Morse inequalities again.

To compute the homology index of an isolated critical set there are several possible
procedures. For example, one can make a cell decomposition (as we will do for the
%-resonance in section 5.2). One can sometimes shorten the calculation by using exact
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sequences (e.g. [GH]), for examplé (A)— H;(X)— H;(X, A)— H;_1(A) where A is a
well chosen subset of and the maps are, respectively, those induced by inclusionX,
reduction modul®, and the boundary map; but a calculation of the rank or nullity of some
boundary operators is usually still required, so the savings are not great. Or one can perturb
to a Morse function and choose a Riemannian metric such that all connecting orbits are
transverse and then compute the homology of the resulting Witten complex [Fl, Sa]; this
may sound as if it defeats the purpose of the exercise, but the idea is that by computing the
Floer homology for one perturbation of the function one obtains constraints on the numbers
of critical points for all small perturbations.

“Note two useful facts: for a producX x Y of topological spacesH;(X x Y) =
Z;:OHj(X) @ H;_;(Y), taking homology over a field (#neth formula), and for an
orientable manifold of dimensiond, H;(M) = H,_;(M) (Poincaé duality).

5. Near the anti-integrable limit

5.1. Simplest results

Near the anti-integrable limit, i.e. far: ¢ small (we shall again take = 1 throughout

this section), all non-degenerate critical points persist, but we do not expect any critical
subsets of dimension greater than zero to be preserved. However, by homology index
theory, at least certain numbers of critical points must persist from each. For example, from
a (Q — 1)-torus at least 271 critical points persist, if non-degenerate.

Before analysing the details of how many critical points are preserved from each of the
critical sets of theorem 1, we remark that close enough to the anti-integrable limit, there are
no other critical points than those arising from anti-integrable critical sets. This is because at
the anti-integrable limit all the critical subsets are locally maximal. There existsO and
a unionU of isolating neighbourhoods for the set of the critical points at the anti-integrable
limit such that fors < 1y all critical points inU are obtained by the above procedure. There
existst; € (0, 1p) such that outsidé/ the gradient of W is too large at = 0 for critical
points to be created there while< #,. Hence fort < #;, all critical points are obtained by
the above procedure.

To compute the homology index of an isolated criticalSgive need a suitable isolating
neighbourhoodV. For a singleP/Q resonance we can chooséto be the pre-image of
a ball in p-space under the may — p, = ) _, |1p£|2, about the centre of the simplex
(the P/Q resonance corresponds to the single maximurp-gpace in the centre). Then
the exit set is the whole boundaby, and it remains only to decide on the homology of
N relative todN. A minor simplification can be achieved by noting that by inverting the
sign of W, the exit set can be made empty, and so

Hi(N,dN) = Hy «(N)  whered = dimN = 2 [( g) - 1} L @)

Thus, for example (using the notation introduced in the previous section),
. a% resonance has homology index= [0, 1, 1], becauseV = I x T?,
e a $ or % resonance has homology index= [0, 0, 1, 2, 1], becauseV = D? x T?,
eaj or§ resonance has homology indgx= [0, 0, 0, 1, 3, 3, 1], becauseV = B3 x T3.
Here, B denotes al-dimensional ball. The generalization tg @2 and (Q — 1)/Q
resonancesQ > 4, is obvious.
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Figure 3. The triangle defined by (44) for th§-resonanc@. The edges have the equations
E>: Y122 =0, E3: |¥13]2 =0, andE4 : |14/2 = 0, respectively, minus the vertices.
5.2. The? resonance

The simplest non-trivial case of a single resonance is%thesonance. As described in
section 3 the equations for tr%resonance can be reduced to:

[r12l® + (Y1l + 1Yl = 3 (44)
[Yr3al® = [Y12l? (45)
[Yr2al® = Y13l (46)
W23 = Y14l (47)

modulo global phase shift. The first equation defines a triangle in the space of
[¥12l?, [¥13l?, [¥14l? > 0, illustrated in figure 3. Above each interior point of the triangle
is a five-torus, which collapses to a three-torus over each edge point and to a one-torus
(circle) over each vertex. The resulting objéctis not a manifold, because a local model
near any edge point i& x T2 x I, as already remarked in section 3, whéfedenotes the
cone over a two-torus.

To compute the homology of this seven-dimensional object, we use a cell decomposition.
A cell in a (Hausdorff) topological spack is a subset homeomorphic to an open ball of
some dimension, such that the homeomorphism has a continuous extension from the closed
ball into X. A cell decompositiorof X is a partition ofX into cells such that the boundary
of any cell is contained in the union of all cells of lower dimension (e.g. [Th]). The first step
in obtaining our cell decomposition is to decompose the triangle of figure 3 into its interior
A, its three edges,, E3, E4 and its three vertice®,, Vs, V4. Next, the five-torus above
each point ofA is slit along five four-tori: 034 = 6012, 624 = 613, 623 = 614, 612 = 624 and
013 = 623 (modulo global phase shift), and the resulting intersections, where we introduce
the notation

9,'}' = argwij . (48)

Note that our choice does not preserve permutation symmetry, but to do so would require
more subdivision. The three-torus above each point of each edge is slit along three two-tori
and their intersections; to match the slicing of the interior, weBlik T° alongf.s = 613,

O3 = 014 and 6013 = O3, E3 X T3 anng O34 = 012, O23 = O14 and 012 = 013, and E4 x T3

along 34 = 012, 024 = 613 and 12 = 6,3. This makes use of the slightly non-obvious fact
that the limit of 010 = 624 = 013 as |Y¥4|—0 is 612 = 613. Finally, the circle above each
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vertex is cut at one point; specificallyz x T! is cut atfyy = 613, V4 x T at 14 = 623,
andV, x T at 61, = 634. The cells are assigned orientations, which we do not listthere

This leads to the table 1 of cells, boundaries, cycles, representatives of homology,
and Betti numbers forx. Thus, using (43), the homology index & is y =
[0,0,0,1,5,7,1,0,1,0,1]. In particular, the sum of the Betti numbers Bf is 16, so
perturbation leads to at least 16 critical points nEaif non-degenerate).

As a consistency check, table 2 displays the homology indices for all the critical sets for
the problem of two fermions on four sites. There are six minima (e.g. with fermionic density
distribution 0011), 12 circles of index 1 (e.§301), eight two-tori of index 2 (e.gi111
and 2220), and theZ resonance=. The consistency check is that the Morse inequalities
for this decomposition into critical subsets hold, i.e. that all elements of the final column
are non-negative and the top one is 0.

5.3. The x 3-resonance

This is given by the equations (29) and (30). To compute its homology index, note first that
the submanifoldR given by (29) is invariant under the gradient flow, because from (34)
and (38),

, aw 2,

Vij=———=\pi+p - Z,O_g Vij (49)
i =1

which is zero whemy;; = 0. Furthermore, near thé X %-resonance,R is normally

hyperbolic, because at the resonance the normal components of the gradient flow evaluate
to

Y12 = §V12 (50)
Vaa = — % (51)
V35 = —3¥3s (52)
Va5 = — 3 Vas (53)

and their complex conjugates. This gives two unstable directigns:and y1». So it is
enough to compute the homology index of the resonand® amd then shift the results up
two dimensions.

In R, (29) imposes the restrictions

prt+p2=1 (54)
p3+ pa+ps =1 (55)
Then thei x i-resonance is the set of maxima Bf in R, becauseW = —13 p? is

maximized subject to these restrictions y= p, = 3, p3 = ps = ps = 3. Thus it suffices

to compute the Betti numbeys of the% X % resonance and then apply (43) to obtain its
homology index inR. Now dimR = 10, hence the homology index in the whole space is
Yi = Bioi-

This reduces the problem to computing the Betti numbers of the resonance. We already
showed that it is a submanifold and of dimension seven. It is also orientable because the
subset where aliy;; # 0 is diffeomorphic toD? x T® and the rest is a union of cells of
dimensions five or less. Thus we hage = 8; = 1 and8; = B7_;. The computation
analogous to table 1 is tedious, however, and we were not able to determine any more Betti

T Many of the orientations can be inferred from table 1.
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Table 2. The Betti numbers fofC P%, and the homology indices for all the critical subsets at
the anti-integrable limit. The penultimate column gives the sum over the critical sets of the
homology indices at dimensian and the final column gives the excess of the alternating sum
of the homology indices up to dimensierfor the sum of the critical sets over that for the Betti
numbers ofCPS.

i CP5 6min 12T* 8T> ¥ Yy Excess

10 1 0 0 0 1 1 0
9 0 0 0 0 0 0 0
8 1 0 0 0 1 1 0
7 0 0 0 0 0 0 0
6 1 0 0 0 1 1 0
5 0 0 0 0 7 7 0
4 1 0 0 8 5 13 7
3 0 0 0 16 1 17 5
2 1 0 12 8 0 20 12
1 0 0 12 0 0 12 7
0o 1 6 0 0 0 6 5

numbers with confidence. It would be particularly interesting to know them, as it could
give insight into whether a product resonance can in some way be regarded as a (tensor)
product.

5.4. Some general rules

The reduction of the computation of homology index of a product resonance to that of its
homology generalizes in many cases.

Theorem 2Givenr € N and positive integer®;, Q;, j = 1,...,r, such thatP;/Q; are
distinct and)_n; P;/Q; # 0 wheneven; € [—P;, Q;— P;]is a collection of integers not all
zero satisfying) _n; = 0, then the homology index of a P1/ Q1 x - - - x P,/ Q,-resonance
is given in terms of its Betti numbers by

Vi = Br—i (56)

L=2<A+1:[<g>—l> (57)

and A is the number of collectiong:;) above such tha} " n;P;/Q; > 0.

where

Proof. Without loss of generality, leF = )" P;, S =) Q;, and choose a decomposition
of the network into subsetS; of size Q;, j =1,...,r. The product resonance lies in the
submanifoldR wherey,, ,, = 0 wheneverk; = i{i : 5; € S;} # P; for somej. The
submanifoldR is invariant under the gradient flow because

wsl...sl.- = (Z Ps; — Z ,052> wsl...s,.-- (58)
It is normally hyperbolic near the product resonance, because at the resonance

Y p2=>_P?/0; (59)
s J
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and
> by =) kiPi/Q;. (60)
i J
Thus the ‘exponent’ from (58) is

Yooy =D pi=) (k—P)P/0O;. (61)
i s J

For a normal component t&, k; # P; for somej; but } . k; = >, P;. Thus the number
of unstable dimensions frorR is 2A.
The complex dimension of the space 9f, ,, with P; suffices inS; for eachj is

SE

1‘[(%‘). ThusR is CP/ with J =] ( %) — 1. HenceL = 2(A + J). 0
j J

If there exists(n;) not all zero such thad_, n; P;/Q; = 0, then further analysis is
required. The simplest example of this is the« 3 x $-resonance.

We did not find a way yet to compute the homology of the geneya)d-resonance, nor
the general product resonance.

6. At and near the integrable limit

In this section, we switch attention to the opposite limit in parameter space, namely the
integrable limitc? : + = 0. Then all critical points have, = 0 for all s, and the energy

is just a quadratic function of the fermionic variables.{H;};—1. s is the single fermion
spectrum, then thé -fermion spectrum consists of all sums, of F different E;. There

are 2 choices. If all the)_, are distinct, then arranging them in increasing order we
obtain one critical point of the total energy for each choice, andkthechoice has index

2(k — 1). This is because the energy is a Hermitian form, so the index increases by one
complex dimension (i.e. by two real dimensions) at each critical point.

Often there are degeneracies. For example, for a one-dimensional chain, or ring with
no preferred direction, th&; come in degenerate pairs corresponding to wavenumbkers
(except for the states with wavenumber 0m0r This modifies the above picture, giving a
critical CP™~1 if m F-fermion states are degenerate, instead of isolated critical points.

Non-degenerate critical points all persist on small perturbation, which includes the
effect of adding small fermion—phonon coupling. Typical small perturbation breaks the
degeneracy of criticalC P"~! manifolds (m > 1), however. Nonetheless, as they are
normally hyperbolic for the gradient flow, they continue as invariant submanifolds of the
gradient flow. Then the numbers of critical points on such a submanifold are constrained by
the Morse inequalities foE P~1. For ¢? : t small, the simplest scenario is that precisely

equilibrium states persist, one of each even index between 0 {r(dl‘jz) — 1).

This is the situation that we would expect unless there are symmetries which preserve some
of the CP™~* or some submanifolds within them.

7. Effects of spin, magnetic fields and electron—electron interaction

In this section, instead of spinless fermions we treat éﬁ'ﬂrrmions, which we cakélectrons
This means that we have creation and annihilation operaﬁgcszzm, for eachs € S and
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o € {1, |}, humber operators

Ny = aj(,am (62)
and in the Hamiltonian (1) we take

ng = Rgp + gy (63)

and A to be an off-diagonal Hermitian operator which allows electrons of both spins to
hop, e.g.

A= Z aiaas,a + aj’aar,g (64)

(s,r),o

where (s, r) represent nearest-neighbour pairs. The space of electron staté% ap-
electrons andr, down-electrons orf sites has one complex dimension for each way of
arranging them with at most one up-electron and one down-electron on each site. As usual,
two states can be regarded as equivalent if they differ only by multiplication by a non-zero
complex number.

In contrast to the spinless case, we can have degenerate local minima férehpdmrons
at the anti-integrable limit. For example, any anti-integrable configuration Witk 1
polarons (singly occupied sites) add := |Fy, — F,| # P, has a spin degeneracy. There

are
J= ( &) (65)

2

ways of distributing the spins among the polarons. This gives a crifiea~* of index 0.

In [AAR] (and [BM1]), this spin degeneracy was not a problem, because it was possible
to treat electronic configurations as equivalent if they give the same electronic density
distribution, regardless of spin. Then the critic@P’~! collapses to a non-degenerate
critical point. Since this can be done foe£ 0 too, the critical point has a locally unique
continuation, and so th€ P/~ continues as a submanifold of critical points.

Various effects, however, can break the spin degeneracy. The simplest is the Zeeman
effect in a magnetic field. This adds B, (nss — ny,) to the Hamiltonian. If the magnetic
field B, is uniform, then [AAR] managed to circumvent the spin degeneracy again, by
reducing to a problem in electronic density only, as the Zeeman effect is the same on all
states with given numbes, and F, of electrons. But we can treat the case of non-uniform
field just as easily. For uniform magnetic field the criti€a#®’~* of index 0 just discussed,
is unchanged, except in energy. It continues#fgt 0 and/or perturbations from uniform
magnetic field, to an invariad P/~ for the gradient flow, but no longer consists entirely
of critical points. But, by the same arguments as in the rest of this paper, we deduce that
it contains at leasy critical points if non-degenerate.

A particularly interesting and important effect which breaks the spin degeneracy
is electron—electron interaction. For example, suppose we add a Hubbard interaction
>, Ungng, to the Hamiltonian. This does not affect the positions of the critical points at
the anti-integrable limit, apart from changing their energy (which is raised bgr each
bipolaron). But fors # 0, the criticalCP’/~* of index 0 above continues to an invariant
CP’~1 for the gradient flow, and again we deduce that it contains at Jeastical points if
non-degenerate. However, the Hubbard interaction preserves the dgug¢a)l symmetry of
simultaneous rotation of all spins. Thus, for example, the familiar triplet states degeneracy
for two-electron states is preserved, which leads to critié8? submanifolds, and there
are analogous degeneracies for more electrons.
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Similar results hold for critical subvarieties of index greater than 0. In particular, we
obtained by explicit calculation in June 1992 an equilibrium state which Aubry called a
‘spin resonant bipolaron’ [Aul].

Other forms of electron—electron interaction can also be treated, for example, a repulsion
between electrons on neighbouring sites (even in the spinless gas&)ann 1.

8. Discussion

We have located all the critical points of the energy for the adiabatic Holstein model at the
integrable and anti-integrable limits, and shown how they behave near both these limits.
The key idea was, in contrast to [AAR], first to minimize the energy with respect to the
phonon variables and then to study the resulting function of the fermionic variables. We
did this in detail in the case of spinless fermions, but showed that the case with spin is
similar. The number of critical points at the anti-integrable limit vastly exceeds that at
the integrable limit, many of them forming connected critical sets. We were able to show
that many critical points survive perturbation to small fermion hopping, by studying the
homology index of the isolated critical sets with respect to the gradient flow of the energy,
though the calculation of the minimum number that must survive from each isolated critical
set remains to be completed. As the electron hopping amplitude increases there must be a
massive sequence of bifurcations annihilating the excess critical points (generically in pairs
but pitchforks can also be expected under various symmetries). It would be very interesting
to study the bifurcations numerically.

The use of symmetries would lead to simplifications in the analysis, which we did not
discuss. In particular, the intersection of each of our critical sets at the anti-integrable
limit with a symmetry class will have its own Betti numbers, and hence an associated
number of critical points with that symmetry will persist. Sometimes restriction to a
symmetry class lifts the degeneracy completely, so the anti-integrable critical sets with
given symmetry are isolated non-degenerate critical points in their symmetry class, which
persist straightforwardly by the implicit function theorem. This idea has been used to good
effect by [Pr].

Our analysis has been for finite systems. An important open question is whether an
isolating neighbourhood for a given resonance can be found for a range of electron hopping
amplituder which is uniform in the system size.

Instead of using the gradient flow of the energy function, an alternative approach to
finding critical points persisting from an isolated critical submanifold is to choose a local
coordinate system for which it is a graph, then prove persistence of each of its points to
a point which is critical with respect to normal variations, which is easy to do uniformly
in the size of the network (cf variational approach to Melnikov’'s method for continuation
of periodic orbits from a manifold of degenerate ones, proposed in [Mac] and developed
in [Au2, AMS]), and deduce that the resulting function on the unperturbed critical set has
at least some number of critical points. To analyse the effect of perturbation on critical
sets which are not submanifolds, however, we see no replacement for the gradient flow
approach.

We have generalized the ideas to allow electron—electron interaction. An interesting
guestion is whether our procedure extends to the case where the phonon variables are made
guantum mechanical operators. If so, the results would provide a mathematical framework in
which to develop Aubry’s ideas on high superconductors [Aul]. The quantum mechanical
analogue of our elimination of the phonon variables is the Lang—Firsov transformation, as
discussed by Aubry, and it would be interesting to see whether this route can be pursued.
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